propriate substituents, pyrolysis leading to the elimination of some small molecule (H_2, \hat{HC}) , or Me₃SiCl) might reasonably lead to cluster formation.¹⁷

Acknowledgment. D.A.J. acknowledges support from the donors of the Petroleum Research Fund, administered by the American Chemical Society, the Research Corp., and the State University of New **York** Research Foundation. T.F.G. acknowledges support from the Office of Naval Research and the National Science Foundation under Grant No. CHE-9016789.

Registry No. C₁₂B₂₄N₂₄, 137720-14-0.

(17) For examples of elimination reactions of this type by similar systems, see ref 14. See also: Lappert, M. F.; Power, P. P.; Sanger, **A.** R.; Srivastava, R. C. *Metal and Metalloid Amides;* Wiley: New York, 1980; Chapters 4 and 5.

Department of Chemistry College at Fredonia State University of New **York** Fredonia, New **York** 14063

James R. Bowser*

Thomas F. George

Departments of Chemistry and Physics Washington State University Pullman, Washington 99164

Push Effect on the Heterolytic *0-0* **Bond Cleavage of Peroxoiron(III) Porphyrin Adducts**

In the oxygen activation mechanisms by **P-450,** peroxidases, and catalase, a heterolytic *0-0* bond cleavage process of (hydroperoxo)iron(III) porphyrin complexes is believed to afford oxoferryl (O=Fe'") porphyrin cation radical intermediates.' **In** fact, the reactive species called "compound I" is observable in some peroxidase reactions.² For these heme enzymes, it has been proposed that the proximal ligands (thiolate,³ imidazolate,⁴ and phenolate⁵) are crucial to the heterolytic process by serving as a strong internal electron donor to destabilize the *0-0* bond of a (hydroperoxo)iron(III) porphyrin (*push effect*).⁶ In addition, distal histidine residues in some cases are considered to serve as a general acid/general base to assist heterolytic *0-0* bond cleavage as shown below (pull effect).⁶ and the proximal ligaties (tholate, imidazolate, and

iternal electron donor to destabilize the O-O bond of

ternal electron donor to destabilize the O-O bond

incressidues in some cases are considered to serve as

acid/g

The push-pull mechanism has **been** examined by several model systems.⁷⁻⁹ For instance, the catalytic oxidation of tri-tert-bu-

- (1) For example: (a) White, R. E.; Coon, M. J. *Annu. Rev. Biochem.* 1980, **50,** 315-356. (b) Dawson, J. H. *Science* 1988, 240, 433-439.
- (2) Dolphin, D.; Forman, **A,;** Borg, D. C.; Fajer, J.; Felton, R. H. *Proc. Natl. Acad. Sci. U.S.A.* 1971, 68, 614-618.
- (3) (a) Poulos, T. L.; Finzel, B. C.; Gunsalus, I. C.; Wagner, *G.* C.; Kraut, J. J. Biol. Chem. 1985, 260, 16122-16130. (b) Poulos, T. L.; Finzel,
B. C.; Howard, A. J. Biochemistry 1986, 25, 5314-5322. (c) Poulos,
T. L.; Howard, A. J. Biochemistry 1987, 26, 8165-8174.
(4) Thanabal, V.; de Ropp, J. S
- *110,* 3027-3035.
- (5) Murthy, M. **R.** N.; Reid, T. J., **111;** Sicignano, **A,;** Tanaka, N.; Rossmann, M. *G.* J. *Mol. Biol.* 1981, 152, 465-499.
- (6) (a) Dawson, J. H.; Holm, R. H.; Trudell, J. R.; Barth, *G.;* Linder, R. E.; Bunnenberg, E.; Djerassi, C.; Tang, S. C. J. *Am. Chem.* **SOC.** 1976, 98, 3707-3709. (b) Poulos, T. L. *Adu.* Inorg. *Biochem.* 1987, **7,** 1.

Daniel A. Jelski Figure 1. Structures of the porphyrin core of various substituted iron porphyrin complexes **(a-f)** employed in this study. Axial ligands have **been** omitted for simplicity.

Figure 2. Visible spectral changes in the reaction of 2.0×10^{-5} M hydroxoiron(III) porphyrin (3b) and 3 equiv of p-nitroperoxybenzoic acid in methylene chloride at -80 "c. The spectrum of **4b** was recorded immediately after the addition of p-nitroperoxybenzoic acid. Line **A** represents the time-dependent change of absorbance at 415 nm. Inset: Plots of log $[(A - A_0)/(A - A_i)]$ at 415 nm vs time for the formation of at -80 °C. 5b by the reaction of 3b with 3 equiv of p-nitroperbenzoic acid in CH_2Cl_2

tylphenol by synthetic iron porphyrin complex/peracid (or hydroperoxide) systems was enhanced by added buffers and by covalently attached bases.7 Further, Bruice et al. also reported **general-acid/general-base** effects by using similar catalytic systems.8 Kinetic studies of the reactions indicate the oxidation being first order in [peracid (or hydroperoxide)] and [iron porphyrin] under the reaction conditions.^{$7,8$} While these observations are very important to understand biological manipulation of hydrogen peroxide against the Fenton type radical process by utilizing the push-pull effects, observed second-order rate constants (k_{obs}) do not represent the *0-0* bond cleavage step *(kdec)* since *kobs* apparently includes preequilibrium constants (K_{eq}) as shown in eq

0020-1669/92/1331-0156\$03.00/0 *0* 1992 American Chemical Society

^{(7) (}a) Traylor, T. *G.;* Lee, W. **A,;** Stynes, Dennis **V.** J. *Am. Chem. SOC.* 1984, 106, 755-764. (b) Traylor, T. *G.;* Popovitz-Biro, **R.** J. *Am. Chem. SOC.* 1988, 110, 239-243.

^{(8) (}a) Zipplies, M. Z.; Lee, W. A.; Bruice, T. C. J. Am. Chem. Soc. 1986, 108, 4433-4445. (b) Yuan, L.-C.; Bruice, T. C. J. Am. Chem. Soc. 1986, 108, 1643-1650. (c) Bruice, T. C.; Balasubramanian, P. N.; Lee,

R. W.; Lindsay Smith, J. R. J. Am. Chem. Soc. 1988, 110, 7890–7892.

(9) (a) Groves, J. T.; Watanabe, Y. *Inorg. Chem.* 1986, 25, 4808–4810. (b)

Groves, J. T.; Watanabe, Y. J. Am. Chem. Soc. 1986, 108, 7834–7836.

(c) Lab Meunier, B. *Inorg.* Chem. 1991, *30,* 706-711.

Table I. Substituent Effect on First-Order Rate Constants for the Heterolytic O-O Bond Cleavage of 4 in CH₂Cl₂ at -80 °C

compds^b	$10^3 k_{\text{dec}}$, s ⁻¹ $(\log k_{\rm rel}^c)$	
	m -CPBA ^d	p -NO ₂ PBA ^e
4а	3.2(0.00)	11.2(0.00)
4b	$0.7(-0.64)$	$2.5(-0.65)$
4с	16.6 (0.72)	50.8(0.66)
4d	4.0(0.10)	14.5(0.11)
4e	a	0.6 (-1.28)
4f	$0.5(-0.77)$	$2.2(-0.71)$

^{*a*} Not available. *b* See Figure 1. *c*_{*k*el} is the relative rate constant based on that of **4a.** ^d3 equiv of m-chloroperoxybenzoic acid were used. **3** equiv of p-nitroperoxybenzoic acid were used.

2. Furthermore, a possible intermediate, **2** or **2',** has never been observed in these catalytic systems.

$$
F e^{III} \cdot \text{Por} \xrightarrow{\text{Re } U} F e^{III} \cdot \text{Por} \xrightarrow{\text{Im } U} \text{P or} \begin{pmatrix} \text{OOH} & \text{OOH} \\ \text{End/or} & F e^{III} \cdot \text{Por} \end{pmatrix} \xrightarrow{\text{K}_{\text{dec}}} \begin{pmatrix} \text{O} & \text{O} \\ \text{H} & \text{O} \\ \text{H} & \text{Fe} \\ \text{K}_{\text{D4}} & \text{K}_{\text{G4}} & \text{K}_{\text{G4}} \\ \text{K}_{\text{D55}} = \text{K}_{\text{dec}} \left[2 \left(\text{or} \ 2 \right) \right] = \text{K}_{\text{dec}} \cdot \text{K}_{\text{eq}} \left[\text{Li} \right] \left[\text{H}_{2} \text{O}_{2} \right] \xrightarrow{\text{G}} \begin{pmatrix} \text{O} & \text{O} \\ \text{K}_{\text{dec}} & \text{O} \\ \text{K}_{\text{D56}} & \text{H}_{\text{dec}} \end{pmatrix}
$$

In order to understand the push effect on the 0-0 bond cleavage reaction of the (hydroperoxo)iron(III) porphyrin complex, we have examined the reactivity of a series of (acylperoxo)iron(III) porphyrins **(4)** by changing substituents at the meso positions of the porphyrin ring. The substituted porphyrins listed in Figure

The propriary in Fig. 1 he substituted popplyrins listed in Figure 1 were prepared according to the methods reported.¹⁰
\n
$$
\begin{array}{ccc}\n0 & 0 \\
0 & 0 \\
0 & 0 \\
Fe^{III} \cdot Por & 0\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n\bullet & 0 \\
\bullet & 0 \\
\bullet & 0\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n\bullet & 0 \\
\bullet & 0 \\
\bullet & 0\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n\bullet & 0 \\
\bullet & 0 \\
\bullet & 0\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n\bullet & 0 \\
\bullet & 0\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n\bullet & 0 \\
\bullet & 0\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n\bullet & 0 \\
\bullet & 0\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n\bullet & 0 \\
\bullet & 0\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n\bullet & 0 \\
\bullet & 0\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n\bullet & 0 \\
\bullet & 0\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n\bullet & 0 \\
\bullet & 0\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n\bullet & 0 \\
\bullet & 0\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n\bullet & 0 \\
\bullet & 0\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n\bullet & 0 \\
\bullet & 0\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n\bullet & 0 \\
\bullet & 0\n\end{array}
$$

In a typical reaction, a methylene chloride solution of hydroxoiron porphyrin (3b, 2.0×10^{-5} M) was cooled to -80 °C in a UV-vis cuvette. Introduction of 3 equiv of p-nitroperbenzoic acid to the solution immediately afforded (acylperoxo)iron(III) porphyrin **(4b),** which exhibits a typical visible spectrum for five-coordinated high-spin iron(III) porphyrins but different from that for the hydroxide complex (Figure 2).¹¹ The following that for the hydroxide complex (Figure 2).¹¹ transformation of **4b to** an oxoferryl porphyrin cation radical'* **(5b)** was also directly observed as shown in Figure 2. Trace A in Figure 2 shows the time course of absorbance change of **3b** at 415 nm upon the addition of 3 equiv of p -nitroperoxybenzoic acid. Similar spectral changes were also observed in the reaction of **3a.c-f** with peracids under the conditions described above. From an analysis of the spectral changes, the 0-0 bond cleavage of **4** was found to be first-order in [4] $(d[5]/dt = k_{dec}[4])$ as shown in Figure 2 (inset), consistent with recent observation by Groves and Watanabe.¹³ Values of the rate constants (k_{dec}) for several substituted porphyrins are summarized in Table I. As expected for the heterolytic O-O cleavage in 4, p-nitroperbenzoato)iron(III) porphyrin complexes decompose faster than the m-chloroperbenzoate derivatives (pull effect).^{13,14} At the same time, electron-donating groups at the meso positions of a porphyrin ring were found to accelerate the *0-0* bond cleavage step, whereas

- (10) (a) Lindsey, L. **S.;** Wagner, R. W. J. *Org. Chem.* **1989,54,828-836.** (b) Kobayashi, H.; Higuchi, T.; Kaizu, Y.; Osada, H.; **Aoki,** M. Bull.
- Chem. Soc. Jpn. 1975, 48, 3137.
(11) (a) Woon, T. C.; Shirazi, A.; Bruice, T. C. Inorg. Chem. 1986, 25,
3845-3846. (b) Groves, J. T.; Watanabe, Y. Inorg. Chem. 1987, 26, **785-186.**
- **(1 2)** Formation of oxoferryl porphyrin cation radicals was also confirmed by NMR spectroscopy in comparison with the result of Groves et al.; see ref 15.
-
-
- (13) Groves, J. T.; Watanabe, Y. J. Am. Chem. Soc. 1988, 110, 8443-8452.
(14) Lee, W. A.; Bruice, T. C. J. Am. Chem. Soc. 1985, 107, 513-514.
(15) (a) Groves, J. T.; Haushalter, R. C.; Nakamura, M.; Nemo, T. E.; Evans, B. Jayaraj, K.; Doppelt, P.; Weiss, R.; Bill, E.; Ding, **X.-Q.;** Bominaar, E. L.; Trautwein, **A. X.;** Winkler, H. New *J. Chem.* **1989,** *13,* **169-172.**

Figure 3. Idealized orbital interaction diagrams for peroxoiron(II1) porphyrin complexes: (a) interaction among the sixth ligand's p orbitals, iron d orbitals, and peroxo p orbitals; (b) interaction among the porphyrin ligand's orbitals, iron d orbitals, and peroxo p orbitals.

electron-withdrawing substituents retarded the formation of **5.** A Hammett plot of log k_{rel} vs the summation of Hammett σ 's of the substituents gives a slope ρ of -0.53 (correlation coefficient: 0.92). These observations demonstrate that the electron donor at the meso positions of a porphyrin ring accelerates the heterolytic 0-0 bond cleavage reaction effectively.

Implication of **the Push Effect of Substituents on a Porphyrin Ring.** Figure **3** shows the orbital interaction diagrams among iron, porphyrin, axial ligand, and peroxide. The oxygen p orbitals *(u** and π^*) of the iron-bound peroxide are overlapped with iron d_{xz} , d_{yz} , and d_{z^2} orbitals, which also interact with the p orbitals of an axial ligand (Figure 3a). Thus, the push effect by the axial ligand on the heterolytic 0-0 bond cleavage depicted in *eq* 1 can be explained by the orbital interaction between the ligand and peroxide through iron. Since the porphyrin e_a and a_{2v} orbitals on the pentacoordinated domed porphyrin ring, in which large electron densities are localized at the pyrrole nitrogens and the *meso* carbons, interact with iron d_{xz} , d_{yz} , and d_{z} orbitals, *meso* substituents on a porphyrin ring as well as the axial ligand are also expected to affect the rate of the heterolytic 0-0 bond cleavage. These considerations are consistent with the experimental results shown in Table I.

In conclusion, it has been shown that the internal electron donor to destabilize the 0-0 bond (push effect) is important in the heterolytic O-O bond cleavage process of meso-substituted (acylperoxo)iron(III) porphyrin complexes to form the corresponding oxoiron(1V) porphyrin cation radicals.

Division of Molecular Engineering **Kazuya Ynmaguchi** Graduate School of Engineering **Yoshibito Watannbe** Kyoto University **Isao Morishima*** Kyoto 606, Japan

Received October 30, *1991*

Environmentally Induced Multiple Intenalence Transitions in a Symmetrically Substituted Analogue of the Creutz-Taube Ion

Intervalence transition energies for class I1 (valence localized) mixed-valence systems are known to be a sensitive function of molecular environment¹ (i.e. solvent,² ionic strength,³⁻⁵ etc.). Class

(1) For a general review, see: Creutz, C. Prog. Inorg. Chem. 1983, 30, 1.
(2) See, for example: Brunschwig, B. S.; Ehrenson, S.; Sutin, N. J. Phys. Chem. 1986, 90, 3657 and references therein.

⁽³⁾ (a) Hammack, W. **S.;** Drickamer, H. G.; Lowery, M. D.; Hendrickson, D. N. *Chem. Phys. Len.* **1986,132,231.** (b) Lowery, M. D.; Hammack, W. **S.;** Drickamer, H. G.; Hendrickson, D. N. *J. Am. Chem. Soc.* **1987,** *109,* **8019.**